Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.288
Filtrar
1.
Appl Radiat Isot ; 207: 111266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461629

RESUMO

Brazil is the fourth largest cement consumer in the world and the largest producer in Latin America, around 1.3% of global production. The main inputs in the manufacture of cement are limestone and clay. Few studies have been carried out in the country on the risk of these materials used in civil construction. Therefore, the objective of this present work is to evaluate the radiological danger that they can present to society. Gamma spectrometry analysis on 16 samples of different brands of cement used as construction material in Rio de Janeiro (Brazil) was performed in this study, using an HPGe detector and the Genie 2000 data acquisition software. Samples were set to count for an accumulation time of 14,400 s (4 h) and all measurements were corrected to eliminate background and backscattering. Activity concentrations are determined for 226Ra was from (41.2 ± 1.6 to 174.9 ± 3.9) Bq kg-1, 232Th was from (15.7 ± 0.5 to 43.1 ± 0.7) Bq kg-1 and 40K was from (82.6 ± 7.2 to 254 ± 17) Bq kg-1. To assess radiological health risks: mean values of Radium Activity Equivalent 150.0 ± 3.4 Bq kg-1, Annual Gonadal Dose Equivalent 468 ± 11 µSv year-1 and Lifetime Excess Cancer Risk (ELCR) 2.42 ± 0.06 were calculated. Total Absorbed Dose Rates ranged from 72.2 ± 1.7 to 225.1 ± 5.2 nGy h-1. The damage to collective health was also estimated from the annual effective dose rates with an estimated total cost of damage to health of US$ 130 million. Values are generally within global limits reported by UNSCEAR.


Assuntos
Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Poluentes Radioativos do Solo , Radioisótopos de Potássio/análise , Tório/análise , Monitoramento de Radiação/métodos , Brasil , Materiais de Construção/análise , Rádio (Elemento)/análise , Poluentes Radioativos do Solo/análise , Espectrometria gama
2.
Artigo em Inglês | MEDLINE | ID: mdl-38541314

RESUMO

This article reports the results of an investigation into the activity concentration of natural radionuclides in raw building materials for underground parking lots, together with the assessment of the radiation hazard for the public related to exposure to ionizing radiations. To this purpose, high-purity germanium (HPGe) γ-ray spectrometry was employed in order to quantify the average specific activity of 226Ra, 232Th, and 40K natural radioisotopes. With the aim to assess any possible radiological health risk for the population, the absorbed γ-dose rate (D), the annual effective dose equivalent outdoor (AEDEout) and indoor (AEDEin), the activity concentration index (I), and the alpha index (Iα) were also estimated, resulting in values that were lower than the maximum recommended ones for humans. Finally, the extent of the correlations existing between the observed radioactivity and radiological parameters and of these parameters with the analyzed samples was quantified through statistical analyses, including Pearson's correlation, a principal component analysis (PCA), and a hierarchical cluster analysis (HCA). As a result, three clusters of the investigated samples were recognized based on their chemical composition and mineralogical nature. Noteworthily, this paper covers a certain gap in science since its topic does not appear in literature in this form. Thus, the authors underline the importance of this work to global knowledge in the environmental research and public health fields.


Assuntos
Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Poluentes Radioativos do Solo , Humanos , Monitoramento de Radiação/métodos , Radioisótopos/análise , Saúde Radiológica , Espectrometria gama , Materiais de Construção/análise , Tório/análise , Radioisótopos de Potássio/análise , Rádio (Elemento)/análise , Poluentes Radioativos do Solo/análise
3.
Ann Work Expo Health ; 68(4): 437-441, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38412287

RESUMO

Personal air monitoring using a TSI SidePak AM520 personal aerosol monitor was performed on a northern Colorado construction site during five tasks from the OSHA Table 1: Specified Exposure Control Methods When Working With Materials Containing Crystalline Silica to estimate silica dust concentrations in real time. Photometric measurements were modified using a gravimetric correction factor and a % respirable crystalline silica adjustment. Each task was sampled once; sample time ranged from 14 min to 40 min, with a mean sample time of 27 min. The mean silica dust concentration estimates (µg/m3) (standard deviation [SD]) for the five tasks computed from the TSI SidePak AM520 respirable dust measurements were core drilling 12 µg/m3 [2.46], grinding 918 µg/m3 [1134.08], cutting with a walk-behind saw 36 µg/m3 [79.67], jackhammering 27 µg/m3 [23.24], and dowel drilling 66 µg/m3 [77.65]. Silica exposure estimates from real-time monitoring can be used to identify exposures that may be related to inadequate controls or worker behaviors that contribute to peak exposures. Respirable crystalline silica exposure estimates presented here are likely not generalizable to other construction sites or tasks.


Assuntos
Poluentes Ocupacionais do Ar , Poeira , Monitoramento Ambiental , Exposição por Inalação , Exposição Ocupacional , Dióxido de Silício , Exposição Ocupacional/análise , Dióxido de Silício/análise , Poluentes Ocupacionais do Ar/análise , Exposição por Inalação/análise , Humanos , Poeira/análise , Monitoramento Ambiental/métodos , Indústria da Construção , Colorado , Materiais de Construção/análise , Aerossóis/análise , Fatores de Tempo
4.
Radiat Prot Dosimetry ; 200(2): 201-205, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38044801

RESUMO

Natural radioactive materials in certain conditions can get to hazardous radiological level. The aim of the present work was to evaluate the natural activity concentration from sampled building materials collected from different locations in Babadogo Estate within Nairobi City County. The analysis done using gamma ray spectrometer, which was put into action for spectral data acquisition and then analysis. The activity concentration levels of 238U, 232Th and 40K for the selected samples of building materials was measured by the use of gamma ray spectrometry method. The analyzed data compared with the standard acceptable values. The activity concentration in 40K varied from 55 ± 3 to 2647 ± 132 Bq kg-1, giving an average (sum of all values divided by 33) value of 831 ± 42 Bq kg-1; 238U varied from 39 ± 2 to 3602 ± 180 Bq kg-1, giving average figures of 378 ± 19 Bq kg-1 and 232Th ranged from 5.000 ± 0.300 to 4213 ± 211 Bq kg-1, giving average figure of 290 ± 15 Bq kg-1. The calculated average figures for activity concentration surpassed the world average values of 420, 33 and 45 Bq kg-1 in 40K, 238U and 232Th, respectively.


Assuntos
Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Urânio , Tório/análise , Urânio/análise , Quênia , Materiais de Construção/análise , Espectrometria gama , Radioisótopos de Potássio/análise , Rádio (Elemento)/análise
5.
Isotopes Environ Health Stud ; 60(1): 90-102, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37997342

RESUMO

ABSTRACTEnvironmental and health risks posed by radionuclides in quarry pit soils are of great concern in environmental health monitoring. The current investigation was aimed at determining the natural radionuclide activity concentration (in Bq kg-1) of the understudied quarry pit granules used as construction materials. The collection and preparation of pit soil samples from Abeokuta quarry sites were done using standard methods, analysis of radiological parameters was carried out using hyperpure germanium (HPGe) spectrometer. Specific activity concentrations of 226Ra, 232Th, and 40K were measured. The values obtained were greater than the world weighted average of 35, 30, and 400 Bq kg-1 for 226Ra, 232Th, and 40K, respectively. The absorbed dose, the annual effective dose, and the radium equivalent were calculated and demonstrated significant values. The radionuclide content of the samples is relatively high and the use of pit soils as a building material, therefore, raises radiological concerns for dwellers in this area and requires periodic monitoring and undergoing a radiation protection program.


Assuntos
Monitoramento de Radiação , Rádio (Elemento) , Poluentes Radioativos do Solo , Doses de Radiação , Monitoramento de Radiação/métodos , Radioisótopos de Potássio/análise , Solo , Nigéria , Saúde Pública , Poluentes Radioativos do Solo/análise , Tório/análise , Radioisótopos/análise , Materiais de Construção/análise , Rádio (Elemento)/análise , Medição de Risco
6.
Radiat Prot Dosimetry ; 200(3): 240-250, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38072679

RESUMO

Natural radioactivity due to 238U, 232Th and 40K in brick samples from Tamil Nadu was determined using gamma-ray spectrometry. The mean activity concentrations of 238U, 232Th and 40K, 69 ± 6, 62 ± 6 and 462 ± 23 Bq kg-1, are slightly greater than the world recommended limits of 35, 45 and 420 Bq kg-1, respectively, and they are compared with a similar work carried out across the world. The radiological parameters such as radium equivalent activity, Raeq (193 ± 17 Bq kg-1), internal hazard index, Hin (0.71 ± 0.06), and activity utilisation index, AUI (1.43 ± 0.13), was lower, whilst absorbed dose rate, DRin (89 ± 8 nGy h-1), annual effective dose equivalent, AEDEin (0.43 ± 0.04 mSv y-1), and excess lifetime cancer risk, ELCRin (1.52 ± 0.13 mSv y-1), are slightly greater than the world's recommended limit. Bi-variate statistical analysis was performed to corroborate the relationship between radionuclides and radiological hazards.


Assuntos
Monitoramento de Radiação , Rádio (Elemento) , Poluentes Radioativos do Solo , Urânio , Tório/análise , Radioisótopos de Potássio/análise , Urânio/análise , Doses de Radiação , Índia , Materiais de Construção/análise , Rádio (Elemento)/análise , Monitoramento de Radiação/métodos , Poluentes Radioativos do Solo/análise
7.
Environ Sci Pollut Res Int ; 30(60): 125965-125976, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38008831

RESUMO

The main aim of this study is to investigate the material and monetary flows of CDW management and to characterize the distribution of illegally dumped CDW in Hanoi. Construction and demolition waste management has become a source of much concern to the urban authorities and citizens of big cities in Vietnam. It is estimated that 3000 t of CDW were generated per day from construction and demolition activities in Hanoi, but only 45% of the CDW was received at official landfills, while 55% of the CDW was disposed of elsewhere. The consequences of improper waste management are potentially alarming. The study conducted interviews to identify the material and cash flow associated with licensed and unlicensed contractors in CDW classification, transportation, treatment, and disposal, to characterize the distribution of illegally dumped CDW in two districts in Hanoi (urban and suburban districts), and to assess the composition of dumped CDW and environmental assessment of illegally dumped CDW by chemical analyses such as leaching and content tests. The study concluded that illegal dumping was performed mostly by unlicensed private companies. The illegally dumped CDW was mostly composed of mixed materials such as concrete, bricks, stones, and some hazardous materials such as asbestos and gypsum were found. The environmental concern of illegally dumped CDW was mostly dust, blockage of water ways, and inundation of increased suspended solids, whereas the heavy metal leaching concentration of all samples was below the environmental standards in Vietnam.


Assuntos
Indústria da Construção , Metais Pesados , Gerenciamento de Resíduos , Materiais de Construção/análise , Instalações de Eliminação de Resíduos , Metais Pesados/análise , Reciclagem , Resíduos Industriais/análise
8.
Environ Sci Pollut Res Int ; 30(47): 104408-104414, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704814

RESUMO

Among the largest CO2 emission industries, the cement industry is ranked in 2nd place. A large volume of CO2 is emitted at the clinker production, which is a cement manufacturing intermediate product. Countries around the world were having difficulty reducing atmospheric emissions of greenhouse gases (GHG). Concrete is still being used more and more as the nation's infrastructure advances. The amount of CO2 emitted by concrete can be decreased by using less cement or substituting other materials for cement. In this study, the CO2 emission analysis is made on M40 grade, which is that metakaolin (MK) and alccofine (AL) are replaced to the cement in the manufacturing of concrete and is compared with the conventional concrete. The optimum cement replacement of MK and AL is 10% in the production of M40 grade concrete. MK and AL concrete have advantages and disadvantages. If proper safety precautions are taken during the manufacturing process, the toxicity level can be reduced, as well as the amount of CO2 released by the cement during the production of concrete. The LCA (life cycle analysis) is made for the concrete specimens, and the results were interpreted to know which concrete sample emits less and more carbon dioxide. The LCA study provided insights into the environmental aspects of metakaolin and alccofine concrete, including potential reductions in CO2 emissions, energy consumption and other environmental indicators. It helps identify areas of improvement and informs decision-making processes regarding sustainable material choices and construction practices. In M40 grade concrete, a 10% cement replacement with metakaolin and alccofine was found to be ideal. These results could also help in identifying the major cause of CO2 emission, and they can be used for further research purposes.


Assuntos
Materiais de Construção , Gases de Efeito Estufa , Materiais de Construção/análise , Dióxido de Carbono/análise , Gases de Efeito Estufa/análise , Indústrias
9.
Environ Sci Pollut Res Int ; 30(41): 93952-93969, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37518845

RESUMO

The characteristics and potential for carbon dioxide capture and storage of the fifteenth-century lime mortar samples from City Palace, Udaipur, India, were studied. Physiochemical analysis followed by XRD, FTIR, TGA-DSC, and FE-SEM was performed. The findings demonstrate that calcium-rich eminently hydraulic mortars were used with a binder/aggregate (B/Ag) ratio of about 1:2.8±0.42. Mineralogy identified load-bearing phases: aragonite, vaterite, and calcite with 45±5% clay minerals. Absorption and stretching bands detected by FTIR at 1631 cm-1 and 2954 cm-1 corroborate the inclusion of plant organics. All samples showed aragonite around 870 cm-1, which can be traced back to bonded CO2 and the subsequent carbonation throughout the age of the structure. TGA-DSC validated XRD and FE-SEM analysis exhibited 18.66±3.40% weight loss at >600 °C, indicating calcite decomposition and CO2 release with CO2/H2O ratio of 3.31 to 3.66. From the historic example, a debate has been sparked about using lime mortars in contemporary construction to mitigate the carbon footprint with inherent attributes.


Assuntos
Dióxido de Carbono , Mudança Climática , Dióxido de Carbono/química , Carbonato de Cálcio/química , Tecnologia , Materiais de Construção/análise
10.
Environ Monit Assess ; 195(6): 673, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37188758

RESUMO

The objective of this research is to assess the impact of radon concentration on workers at certain construction material industries in Erbil, Kurdistan Region of Iraq. The CR-39 solid-state track detector was used in this experiment to monitor radon levels and their daughters. For this purpose, as a case study group, 70 workers were divided into seven subgroups (gypsum, cement plant, lightweight block, marble, red brick 1, crusher stone, and concrete block 2), and 20 healthy volunteers were selected as a control group. The findings demonstrate that the mean concentrations of radon, radium, uranium, and radon daughters deposited on the detector face (POS) and chamber walls (POW) for the case study group were 9.61 ± 1.52 Bq/m3, 0.33 ± 0.05 Bq/Kg, 5.39 ± 0.86 mBq/Kg, 4 ± 0.63, and 16.62 ± 2.64 mBq/m3, whereas for the control group, they were 3.39 ± 0.58 Bq/m3, 0.117 ± 0.03 Bq/Kg, 1.91 ± 0.32 mBq/Kg, 1.41 ± 0.24, and 5.88 ± 1 mBq/m3, respectively. The statistical analysis revealed that radon, radium, uranium, and POW and POS concentrations were statistically significant (p ≤ 0.001) in the samples for the case study groups of cement, lightweight block, red brick 1, marble, and crusher stone factories in comparison to the control group; however, the results for gypsum and concrete block 2 factories were not statistically significant in comparison to the control group. Intriguingly, the radon levels in every blood sample examined were far lower than the 200 Bq/m3 limit established by the International Atomic Energy Agency. Hence, it may be argued that the blood is devoid of contaminants. These results are crucial for determining whether or not an individual is exposed to substantial quantities of radiation and for demonstrating a link between radon, its daughter, uranium, and the prevalence of cancer among workers in the Kurdish region of Iraq.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Rádio (Elemento) , Radônio , Urânio , Humanos , Rádio (Elemento)/análise , Urânio/análise , Sulfato de Cálcio/análise , Monitoramento Ambiental , Radônio/análise , Poluentes Radioativos do Ar/análise , Materiais de Construção/análise , Carbonato de Cálcio/análise , Monitoramento de Radiação/métodos
11.
Environ Sci Pollut Res Int ; 30(20): 58493-58515, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36988805

RESUMO

This research incorporates sustainable materials such as ground granulated blast furnace slag (GGBS) and recycled waste glass (RWG) as cement and fine aggregate replacement respectively to produce green dry mix mortar paving blocks. The GGBS and RWG contents in the mortar paving block were optimised using the response surface methodology (RSM), considering the performances of the ultrasonic pulse velocity (UPV), flexural and compressive strengths, water absorption, and Cantabro loss. Life cycle assessment (LCA) was also conducted to evaluate the environmental impact of the optimised green mortar paving blocks. The RSM suggested that the paving block with optimum GGBS and RWG contents of 26.5% and 91.3%, respectively, could exhibit compressive strength of 36.5 MPa, which complied with the requirement for concrete segmental paving units (MA20). Excluding the mixes not fulfilling the MA20 requirement, the mix with 40% GGBS and 100% RWG exhibited the lowest values for the acidification potential (AP), global warming potential (GWP), photochemical oxidation (POCP), abiotic depletion potential for fossil fuel (ADPF), and water scarcity/strength ratio. Whereas, for eutrophication potential (EP) and abiotic depletion for elements (ADP (elements))/strength ratio, the mix with 100% RWG exhibited the lowest value. The optimised mix from RSM showed a similar performance as the two mixes.


Assuntos
Materiais de Construção , Resíduos Industriais , Resíduos Industriais/análise , Materiais de Construção/análise , Força Compressiva , Água/análise , Meio Ambiente
12.
Artigo em Inglês | MEDLINE | ID: mdl-36981845

RESUMO

Policies have long been considered the essential driving force in promoting construction and demolition waste (CDW) recycling. However, the policy instruments adopted in different economies have varied greatly, which contributes to the difficulty in quantitative discernment of their effect. This study aims to examine whether the holistic employment of policy measures determines the development of CDW recycling around China. To accurately measure the holistic adoption of CDW policies, this study assessed policy strength via a proposed three-dimensional evaluation model. The spatiotemporal differences in policy strength among the 52 sample cities were further defined using K-means clustering and the Gini coefficient. Next, the driving effect of policy on the initial establishment of CDW recycling industry practices was examined by event history analysis (EHA). Finally, fuzzy set qualitative comparative analysis (fsQCA) was used to analyze the sufficiency and necessity of policy for the initial establishment of CDW recycling practices. The results indicated that the establishment of a first CDW recycling plant is only slightly correlated with policy measures, whereas it is highly correlated with the pilot city and per capita GDP. Furthermore, application of policy is neither a necessary nor sufficient condition for the establishment of a CDW recycling industry facility.


Assuntos
Indústria da Construção , Gerenciamento de Resíduos , Materiais de Construção/análise , Gerenciamento de Resíduos/métodos , Indústria da Construção/métodos , Cidades , Reciclagem/métodos , China , Resíduos Industriais/análise
13.
Ann Work Expo Health ; 67(5): 609-621, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36866437

RESUMO

OBJECTIVES: Cement belongs to the most used building materials. Clinker is the major constituent of cement, and it is believed that the strong increase of pH after hydration of clinker minerals is responsible for the observed decline in lung function of cement production workers. Information on clinker exposure at workplaces in the cement production industry is scarse. The aims of this study are to determine the chemical composition of thoracic dust and to quantify workplace exposure to clinker in cement production. METHODS: The elemental composition of 1250 personal thoracic samples collected at workplaces in 15 plants located in 8 different countries (Estonia, Greece, Italy, Norway, Sweden, Switzerland, Spain, Turkey) was determined by inductively coupled plasma optical emission spectrometry (ICP-OES), separately for water- and acid-soluble fraction. Positive matrix factorization (PMF) was used to determine the contribution of different sources to the dust composition and to quantify the clinker content in 1227 of the thoracic samples. In addition, 107 material samples were analysed to facilitate interpretation of the factors obtained by PMF. RESULTS: The median thoracic mass concentrations varied for individual plants between 0.28 and 3.5 mg/m3. PMF with 8 water-soluble and 10 insoluble (i.e., acid-soluble) element concentrations yielded a five-factor solution: Ca, K, Na sulfates; silicates; insoluble clinker; soluble clinker-rich; and soluble Ca-rich. The clinker content of the samples was calculated as sum of the insoluble clinker and soluble clinker-rich factors. The median clinker fraction of all samples was 45% (range 0-95%), and varied between 20% and 70% for individual plants. DISCUSSION: The 5-factor solution of PMF was selected on the basis of several mathematical parameters recommended in the literature as well as the mineralogical interpretability of the factors. In addition, interpretation of the factors was supported by the measured apparent solubility of Al, K, Si, Fe, and to a lesser extent Ca in material samples. The total clinker content obtained in the present study is considerably lower than estimates based on the Ca concentrations in a sample, and somewhat lower than estimates based on Si concentrations after selective leaching with a methanol/maleic acid mixture. The clinker abundance in workplace dust of one plant investigated in the present contribution was also estimated in a recent study by electron microscopy, and the good agreement between both studies gives confidence in the results of PMF. CONCLUSIONS: The clinker fraction in personal thoracic samples could be quantified from the chemical composition by positive matrix factorization. Our results allow for further epidemiological analyses of health effects in the cement production industry. As these estimates are more accurate for clinker exposure than aerosol mass, stronger associations with respiratory effects are expected if clinker is the main cause of these effects.


Assuntos
Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Poeira/análise , Materiais de Construção/análise , Local de Trabalho , Indústrias
14.
Artigo em Inglês | MEDLINE | ID: mdl-36834185

RESUMO

After a long decomposition process, organic matter turns into humic substances. In humus, carbon dioxide (CO2) bound in photosynthesis is brought back to the soil, where it should be used by its ecosystem. This is important because similar relationships are found in modern concretes and concretes designed with the use of geochemical modeling (possibility of the C-S-H phase for storing harmful substances). The aim of the article was to investigate the possibility of using humus (Humus Active-HA) and vermicompost (Biohumus Extra Universal-BEU), i.e., organic matter resulting from a long process of biological decomposition in the production of autoclaved bricks containing only ecological materials, i.e., sand, lime, and water. Tests of compressive strength, density, microstructure based on SEM, XRD, and micro-CT analysis were performed. The results of the research indicate that humus and vermicompost can be successfully used in their production. The paper compares traditional products and products made of raw material mass containing 3%, 7%, and 11% of humus and vermicompost, using the apparatus of mathematical experiment planning. Compressive strength, volumetric density, water absorption, and wicking, porosity, and material microstructure were tested. The best results were obtained for samples with the addition of 7% humus and 3% vermicompost. The compressive strength increased to 42.04 MPa (compared to standard bricks, whose strength is 15-20 MPa), and the bulk density increased by about 55%, to the value of 2.11 kg/dm3, which indicates the densification of the material's microstructure. They were characterized by the highest compressive strength, moderate water absorption, and a high proportion of closed pores in the sample.


Assuntos
Materiais de Construção , Ecossistema , Materiais de Construção/análise , Solo/química , Substâncias Húmicas/análise , Água/análise
15.
Artigo em Inglês | MEDLINE | ID: mdl-36834403

RESUMO

Achieving sustainable management and efficient use of natural resources stands out as one of the goals included in the Goals for Sustainable Development in the 2030 Agenda. The construction sector is currently far from presenting an efficient model in terms of treating waste generated by it. Variations in the physical and chemical properties of recycled aggregates coming from construction and demolition waste are one of the main reasons of their limited use in the production of construction materials. This research presents a physicochemical characterization of three different types of recycled aggregates coming from different types of waste: concrete, ceramic and mixed. Physical characterization shows that recycled concrete aggregate has better physical properties compared with mixed recycled aggregate and ceramic recycled aggregate, which makes it more suitable for use in masonry mortars and concrete, due to its higher dry density (2210.33 kg/m3), its lower content of fines (5.17%), its lower friability coefficient (24.60%), and its water absorption coefficient (6.70%). Chemical characterization shows that none of the tested recycled aggregates contains traces of harmful chemical agents that exceed the limits established by the reference regulations. Finally, the statistical analysis shows good homogeneity for these raw materials, obtaining low coefficients of variation and values within the recommended in each of the calculated confidence intervals.


Assuntos
Resíduos Industriais , Gerenciamento de Resíduos , Resíduos Industriais/análise , Materiais de Construção/análise , Reciclagem , Recursos Naturais
16.
J Environ Manage ; 326(Pt A): 116690, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372035

RESUMO

In this research, an economical and eco-friendly ultra-high performance concrete (UHPC) with compressive strength of more than 120 MPa was prepared with the dosage of sewage sludge ash (SSA) at 8 wt%. The results indicate that the addition of SSA has an adverse influence on the workability of UHPC samples due to its special morphology. Furthermore, the microstructure and phase assemblage of SSA-based UHPC were determined and the results show that SSA inhibits the early hydration of cement clinker, while promotes the precipitation of additional hydration products at later curing ages due to its pozzolanic reaction. The pore structure analysis of SSA-based UHPC determined by mercury intrusion porosimetry indicates that the addition of SSA increases the cumulative pore volume, while decreases the large pore volume of UHPC. Economic and environmental analysis indicates that using SSA-based UHPC greatly reduces the unit cost and the impacts on the environment.


Assuntos
Materiais de Construção , Esgotos , Esgotos/química , Materiais de Construção/análise , Força Compressiva
17.
J Radiol Prot ; 42(4)2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36541479

RESUMO

In this work, the radon emanation coefficients for selected building materials that are most often used in Serbia for covering floor surfaces (concrete, concrete screed, granite, glazed ceramic tiles, marble, roofing tile, and terrazzo tile) were determined, and the influence of the material structure on their values. The concentration of226Ra activity in the samples was determined using the gamma spectrometry method. Radon emanation was measured with the RAD7 device. The porosity of the samples was tested using mercury intrusion porosimetry and water absorption methods, and the structural analysis was performed using x-ray diffraction analysis and x-ray fluorescence analysis. The measured values of226Ra activity concentrations were in the range (4.93-298) Bq kg-1, and the estimated values of the radon emanation coefficients were in the range (0.55-6.05) %. The obtained results indicate that the chemical and mineralogical composition, method of production, and the226Ra activity concentration have an influence on the emanation of radon from the material. No significant correlation was found between the radon emanation coefficient and the open porosity of the material, most likely due to the inhomogeneous presence of pores of different dimensions in the materials. It was established that the total value of the emanation coefficient depends on the emanation coefficient for pores ⩽100µm in size.


Assuntos
Monitoramento de Radiação , Radônio , Poluentes Radioativos do Solo , Radônio/análise , Materiais de Construção/análise , Poluentes Radioativos do Solo/análise , Água/análise
18.
Molecules ; 27(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431986

RESUMO

The mixing water used for cement concrete has a significant effect on the physical properties of the material after hardening; however, other than the upper limit for the mixed impurities, not enough consideration has been given to the functions and characteristics of water at the molecular level. In this study, we investigated the effect of four different types of water (two spring-, mineral waters, tap water and distilled water) on the drying shrinkage of the hardened cement by comparing the material properties of the concrete specimens and analyzing the molecular structure of the water and cement mortar using aquaphotomics. The near infrared (NIR) spectra of waters used for mixing were acquired in the transmittance mode using a high-precision, high-accuracy benchtop spectrometer in the range of 400-2500 nm, with the 0.5 nm step. The NIR spectra of cement paste and mortar were measured in 6.2 nm increments in the wavelength range of 950 nm to 1650 nm using a portable spectrometer. The measurements of cement paste and mortar were performed on Day 0 (immediately after mixing, cement paste), 1 day, 3 days, 7 days, and 28 days after mixing (cement mortar). The spectral data were analyzed according to the aquaphotomics' multivariate analysis protocol, which involved exploration of raw and preprocessed spectra, exploratory analysis, discriminating analysis and aquagrams. The results of the aquaphotomics' analysis were interpreted together with the results of thermal and drying shrinkage measurements. Together, the findings clearly demonstrated that the thermal and drying shrinkage properties of the hardened cement material differed depending on the water used. Better mechanical properties were found to be a result of using mineral waters for cement mixing despite minute differences in the chemical content. In addition, the aquaphotomic characterization of the molecular structure of waters and cement mortar during the initial hydration reaction demonstrated the possibility to predict the characteristics of hardened cement at a very early stage. This provided the rationale to propose a novel evaluation method based on aquaphotomics for non-invasive evaluation and monitoring of cement mortar.


Assuntos
Materiais de Construção , Águas Minerais , Materiais de Construção/análise , Cimentos de Ionômeros de Vidro , Materiais Dentários , Fenômenos Físicos
19.
Water Sci Technol ; 86(9): 2358-2374, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36378185

RESUMO

The effect of potassium ferrate (PF) and straw fiber (SF) on the strength of cement-based solidified municipal sludge, including the influence of reducing the organic matter in the sludge on the efficiency of the hydration of the cement, was studied. Single-factor tests, orthogonal tests, and linear weighted optimization methods were used to obtain suitable ratios to meet practical requirements, and then SEM and XRD analyses were used to explore the solidification mechanism. The results showed that PF and SF had significant influence on the strength, with SF having the greatest influence and the strength increasing with the amount of both admixtures, and cement had no significant influence on the strength. After linear weighting optimization, the ideal dosage was found to be 20% cement, 20% PF, and 5% SF, which produced a solidified sludge that had an strength of 126.87 kPa, far higher than the 50 kPa required to qualify for disposal in landfills. Analysis of the mineral content and microstructure showed that PF and SF could promote cement hydration and produce more hydration products, and the density of the optimized sample was much higher than that of the raw sludge and a sludge sample mixed with 20% cement alone.


Assuntos
Compostos de Ferro , Esgotos , Esgotos/química , Materiais de Construção/análise , Compostos de Potássio
20.
Sensors (Basel) ; 22(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36236616

RESUMO

The topic of research included in this article was the evaluation of the influence of cenospheres on selected parameters of mortar cement. Samples were designed as CEM I 42.5 R Portland cement with the application of different additive amounts. In the experimental work, the consistency, compressive strength, and bending strength were tested after 28 and 56 days of maturation, and after heating temperatures of 20, 300, 500, and 700 °C. The compressive strength was tested on half beams (40 × 40 × 160 mm). Using the obtained results, the properties of the mortars were compared. The research confirmed the possibility of producing cenosphere-modified cement mortars. Cenospheres used in the preparation of cement mortar negatively affected the bending and compressive strength with increasing temperature (20, 300, 500, 700 °C) and increasing content of this additive (10, 20, 30%).


Assuntos
Materiais de Construção , Força Compressiva , Materiais de Construção/análise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...